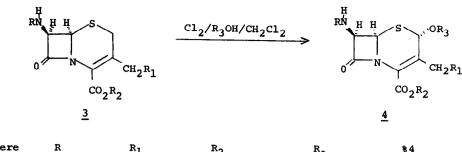

C2-ALKOXY CEPHALOSPORINS

D. O. Spry The Lilly Research Laboratories Eli Lilly and Company Indianapolis, Indiana 46206

(Received in USA 22 June 1972; received in UK for publication 31 July 1972) Recent interest in α -chloro sulfides⁽¹⁾ and sulfoxides^(2,3) has prompted us to investigate such chemistry as a possible route to C₂-substituted cephalosporins.

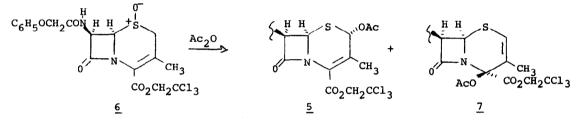

Treatment of <u>1</u> with sulfuryl chloride⁽²⁾ in pyridine-methylene chloride resulted in the α -chloro sulfoxide <u>2</u> (one isomer). The same isomer was obtained when <u>1</u> was treated with chlorine⁽³⁾ under similar conditions.

Treatment of <u>2</u> with Grignard reagents⁽⁴⁾ or with refluxing methanol failed to cause any reaction at C₂. This is, perhaps, not surprising since Loeppky and Chang have shown that α -chloro sulfoxides are unreactive with nucleophiles.⁽⁵⁾ Attempts to reduce the α -chloro sulfoxide to the more reactive α -chloro sulfide failed using the acetyl chloride-stannous chloride procedure.⁽⁶⁾

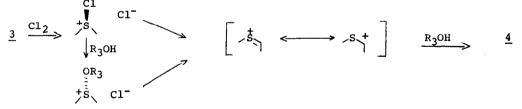
Since α -chloro sulfides are quite reactive and in some cases unstable, we chose to trap it or its intermediate with an alcohol. Treatment of <u>3</u> with one equivalent of chlorine in alcohol-methylene chloride solution resulted in a rapid conversion to the corresponding 2-alkoxy derivative <u>4</u>. Although the yields of <u>4</u> are low (8-40%) the reaction is quite clean, the only product being the alkoxy derivative, with the exception of sulfoxide formation, particularly in the case of <u>t</u>-butanol.

3717

Where	R	R1	^R 2	R ₃	8 <u>4</u>
	с ₆ н ₅ осн ₂ со	H	$CH_2C_6H_4NO_2(p)$	CH ₃	40
	n	H	11	CH ₃ CH ₂	30
		и	**	сн (сн ₃) ₂	33
	19		11	с (сн ₃) ₃	16
	# 5	OAc	CH2CC13	Сн ₃	17
	^t s ⁺ CH ₂ CO	OAc	11	CH ₃	20
	St CH2CO	OAc	0	CH ₃ CH ₂	8
	H•TSA	OAc	C (CH ₃) 3	снз	10


Thus to a stirred solution of p-nitrobenzyl 7-phenoxyacetamido-3-methyl-3cephem-4-carboxylate (0.50 g, 1.0 mmoles) in 50 ml 1/1 methanol-methylene chloride was added dropwise 1.1 equivalents chlorine in methylene chloride. The reaction mixture was allowed to stir at room temperature for 1 hr; however, TLC showed that the reaction was instantaneous. The mixture was washed with brine, dried with sodium sulfate and chromatographed on silica gel to give 0.22 g starting material and 0.22 g product (40% yield, 69% corr. yield). Crystallization from acetone-hexane gave pure 2-methoxy ester, mp 171.5-172.0°, ir (CHCl₃), 1783 cm⁻¹ (β -lactam); mass spec 513, nmr (CDCl₃) δ 2.19 (s,3,vinyl Me), 3.47 (s,3,OMe), 4.82 (bs,1,H₂), 5.11 (d,J=5.0Hz,1,H₆), 5.95 (q with fine split, J=9.0/5.0/0.5Hz,1,H₇). The compound gave correct elemental analysis.

Ester cleavage, either with zinc-acetic acid or by hydrogenolysis, yields the corresponding 2-alkoxy cephalosporanic acids which have antibacterial activity.


In all cases alkoxylation results in formation of only one of the two possible isomers at C_2 , the isomer being assigned the α -configuration on the basis of nmr studies. Thus we observed a nuclear Overhauser effect (12-16%) No. 35

between the C₂-methine and the C₃-vinyl methyl. Benzene shielding studies⁽⁷⁾ on the C₂-isopropoxy sulfide and β -sulfoxide derivatives showed no shielding of the C₂-methine. This data implies that the H₂ proton is β equatorial and thus the alkoxy configuration is α axial. In all cases we observed a <u>5 bonded</u> <u>coupling</u> (0.5-1.0 cps) of the H₂ proton across sulfur to H₇.

Results of this reaction sequence using nucleophiles other than alcohols have been discouraging. Acetate adds, however, to give the C_2 - α -acetoxy derivative 5, which was also obtained via the Pummerer rearrangement of 6 (α - or β -sulfoxide) using acetic anhydride. The product (5) compared favorably with known material.⁽⁸⁾ The 5 bonded coupling (H_2 - H_7) being barely detectable in 5 with the phenoxyacetamido side chain, however, is quite prominent with the phthalimido side chain as a substituent.

The reaction is believed to proceed via the β -chlorosulfonium chloride⁽⁹⁾ and is analogous to that reported by Skattebøl *et al*⁽¹⁰⁾ for the reaction of sulfides with <u>t</u>-butyl hypochlorite in alcohols.

The alkaline methanolysis of N-p-toluenesulfonyl sulfilimine to yield α -methoxy sulfides has been described recently and is believed to proceed through a similar mechanism.⁽¹¹⁾

REFERENCES

- L. A. Paquette, R. E. Winzard, Jr., J. C. Philips, G. L. Thompson, L. K. Read, and J. Clardy, J. Amer. Chem. Soc., <u>93</u>, 4508 (1971).
- 2. G. Tsuchihashi, K. Ogura, S. Iriuchijima and S. Tomisawa, Synthesis, 89 (1971).
- 3. K. C. Tin and T. Durst, Tetrahedron Lett., 4643 (1970).
- 4. D. L. Tuleen and R. H. Bennett, J. Heterocycl. Chem., 6, 115 (1969).
- 5. R. N. Loeppky and D. C. K. Chang, Tetrahedron Lett., 5415 (1968).
- G. V. Kaiser, R. D. G. Cooper, R. E. Koehler, C. F. Murphy, J. A. Webber, I. G. Wright, and E. M. Van Heyningen, J. Org. Chem., <u>35</u>, 2430 (1970).
- R. D. G. Cooper, P. V. Demarco, J. C. Cheng, and N. D. Jones, J. Amer. Chem. Soc., <u>91</u>, 1408 (1969).
- R. D. G. Cooper, P. V. Demarco, C. F. Murphy, and L. A. Spangle, J. Chem. Soc. C, 340 (1970).
- 9. Replacing the alcohol by bicarbonate solution in the experimental resulted in the stereospecific formation of the α -sulfoxide (55%), mp 188-189°, identical to known material (Unpublished results of I. G. Wright) obtained from the peracid oxidation in 5.5% yield.
- 10. L. Skattebøl, B. Boulette, and S. Solomon, J. Org. Chem., 32, 3111 (1967).
- H. Kobayashi, N. Furukawa, T. Aida, K. Tsujihara, and S. Oae, Tetrahedron Lett., 3109 (1971).